1 SEM TDC MTMH (CBCS) C1

2021

(March)

MATHEMATICS

(Core)

Paper: C-1

(Calculus)

Full Marks: 60
Pass Marks: 24

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. (a) Write the value of $\frac{d}{dt}(\tanh t)$.
 - (b) Write the value of $\frac{d^n}{dx^n}(\sin ax)$.
 - (c) Write intervals in which $y = x^3$ is concave up and concave down. 2

- IS (8585) HMTM OGT MES I
 - Determine the concavity of $y = 2 + \sin x$ on $[0, 2\pi]$. 2
 - 1500 Show that $\cosh 2x = \cosh^2 x + \sinh^2 x$ 3 (e)

Show that $\cosh^{-1}\left(\frac{1}{x}\right) = \sec h^{-1}x$

- Find y_n (any one) if— (f)
 - (i) $y = \cos^3 x$;

(ii)
$$y = \frac{a - x \cdot \min\{0\}}{a + x}$$

If $y = \tan^{-1} \frac{x}{g}$, then find y_n . 4

Buson Or Saus

If $\log y = \tan^{-1} x$, show that

$$(1+x^2)y_2 + (2x-1)y_1 = 0$$

(h)

Evaluate:

$$\lim_{x \to 0} \frac{x - \sin x \cos x}{x^3}$$

Find the asymptote of the curve

$$y^3 - x^2y + 2y^2 + 4y + 1 = 0$$

2. (a) Evaluate:

2

 $\int_0^{\frac{\pi}{2}} \cos^3 x \, dx$

(b) Evaluate (any one):

4

- (i) $\int_0^{\frac{\pi}{2}} \sin^4 x \cos^5 x \, dx$
- (ii) $\int \sec^6 x \, dx$
- (c) Obtain the reduction formula for

 $\int \tan^n x \, dx$

4

Or

A region is enclosed by the triangles with vertices (0, 1), (1, 0), (1, 1). Find the volume of the solid generated by revolving the region about the y-axis.

(d) The circle $x^2 + y^2 = a^2$ revolves round the x-axis. Find the volume so generated.

5

Or

A region bounded by the curve $y = \sqrt{x}$, the x-axis, and the line x = 4 is revolved about the x-axis to generate a solid. Find the volume of the solid.

3.	(a)	Write the parametric formula for $\frac{dy}{dx}$.	1
	(b)	Write the equation of the circle in polar form.	1
	(c)	Write the equivalent Cartesian equation of $r^2 \sin 2\theta = 2$.	2
	(d)	The position of a particle moving in the xy -plane is given by $x = \sqrt{t}$, $y = t$. Find the path traced out by the particle.	2
}	(e)	Find a parametrization for the curve having the line segment with end points (-1, -3) and (4, 1).	4
		Or	
	edge tito yd vis.	Parametric equations and parameter interval for the motion of a particle in xy -plane is given $x = \cos 2t$, $y = \sin 2t$, $0 \le t \le \pi$. Identify the particle's path by finding a Cartesian equation.	
	(f)	Find the length of the astroid	
		$x = \cos^3 t, \ y = \sin^3 t, \ 0 \le t \le 2\pi$ Or	5
	1200	Find the area of the surfaces generated	

by revolving the curve $x = \cos t$, $y = 2 + \sin t$, $0 \le t \le 2\pi$ about x-axis.

4. (a) Write the necessary condition for the vectors \vec{a} , \vec{b} , \vec{c} to be co-planar.

1

(b) The position vector of a moving particle is given by

$$\vec{r} = \cos 2t\hat{i} + 2\sin 4t\hat{j} + t^2\hat{k}$$

Find the acceleration at any time t.

2

(c) Find the volume of the parallelopiped whose edges are represented by

$$\vec{a} = 2\hat{i} - 3\hat{j} + 4\hat{k}, \ \vec{b} = \hat{i} + 2\hat{j} - \hat{k}, \ \vec{c} = 3\hat{i} - \hat{j} + 2\hat{k}$$
 3

Or

Let

$$\vec{R}(u) = 4\hat{i} + (u^2 + 6u^3)\hat{j} + u^2\hat{k}$$

Find $\int_{1}^{3} \overrightarrow{R}(u) du$.

(d) Evaluate $\vec{a} \times (\vec{b} \times \vec{c})$, where

$$\vec{a} = \hat{i} - 2\hat{j} - 3\hat{k}, \ \vec{b} = 2\hat{i} + \hat{j} - \hat{k}, \ \vec{c} = \hat{i} + 3\hat{j} - 2\hat{k}$$

Or

Find the tangential component of acceleration of a moving particle.
