3 SEM TDC MTMH (CBCS) C 6

2021

(Held in January/February, 2022)

MATHEMATICS

(Core)

Paper: C-6

(Group Theory—I)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. (a) What is the inverse of the element $13 \text{ in } Z_{20}$?

 (b) List the elements of U(20).
 - (c) Let G be a group and $a, b \in G$ such that $a^3 = e$, $aba^{-1} = b^2$. Find O(b).
 - (d) Let G be a group, then prove that $(ab)^{-1} = b^{-1}a^{-1}, \forall a, b \in G$ 2

(Turn Over)

1

1

(e)	In D_4 , find all elements X such that	
	(i) $X^3 = V$	
	(ii) $X^3 = R_{90}$	
	(iii) $X^3 = R_0$	
	(iv) $X^2 = R_0$	4
	Or	
	Construct a complete Cayley table for D_3 .	
(f)	Prove that the set $G = \{1, 2, 3, 4, 5, 6\}$ is a finite abelian group of order 6 with respect to multiplication modulo 7.	5
(a)	Let H and K be two subgroups of a group G . Then, write the condition such that $H \cup K$ may be a subgroup of G .	1
(b)	Define index of a subgroup in a group.	2
(c)	Prove that a non-empty subset H of a finite group G is a subgroup of G iff $HH = H$.	4
4.50		
(d)	Define normalizer of an element in a group G and also show that $N(a)$ is a	
	subgroup of the group G where $a \in G$.	4

(Continued)

22P/92

Or

an equivalence relation.

Prove	that	O(C(a)) = 1	if	and	only	if
$a \in Z(C)$	<i>3</i>).				4.0	

Prove that the relation of conjugacy is

3.	(a)	Write all the subgroups of a cyclic group of order 12.	1
	(b)	State Fermat's little theorem.	1
	(c)	Prove that a group of prime order has no proper subgroup.	2
	(d)	Give an example of a cyclic group whose	

- (e) Let G be a group and H be a subgroup of G. Let $a, b \in G$. Then show that
 - (i) $Ha = Hb \text{ iff } ab^{-1} \in H$

order is not prime.

- (ii) Ha is a subgroup of G iff $a \in H$ 4
- (f) Let H be a subgroup of a finite group G.

 Then prove that the order of H divides the order of G.

4

2

(e)

(g)	Prove that an infinite cyclic group has exactly two generators. Or	5
	Prove that the order of a finite cyclic group is equal to the order of its generator.	
(a)	State Cauchy's theorem for finite abelian group.	1
(b)	Prove that quotient group of an abelian group is abelian.	2
(c)	Prove that every subgroup of a cyclic group is normal.	3
(d)	Let H and K be two subgroups of a group G . Then prove that HK is a subgroup of G if K is normal subgroup of G . Also if H and K both are normal subgroups, then HK is also normal subgroup of G .	

If G_1 and G_2 are groups, then prove that

(i) identity is the only element common to $G_1 \times \{e_2\}$ and $\{e_1\} \times G_2$

(e)

(ii) every element of $G_1 \times G_2$ can be uniquely expressed as the product of an element in $G_1 \times \{e_2\}$ by an element in $\{e_1\} \times G_2$

(iii)
$$G_1 \times G_2 \cong G_2 \times G_1$$
 1+2+2=5

Or

Let H be a subgroup of a group G such that $x^2 \in H$, $\forall x \in G$. Then prove that H is normal subgroup of G. Also prove that G/H is abelian.

5. (a) Let H be a normal subgroup of a group G and $f: G \to G/H$ such that f(x) = Hx, $\forall x \in G$. Then prove that f is an epimorphism.

- (b) Let f be a homomorphism from a group G into a group G'. Then prove that
 - (i) $f(a^{-1}) = [f(a)]^{-1}, \forall a \in G$
 - (ii) if O(a) is finite, then O(f(a))|O(a) where $a \in G$
- (c) Let H and K be two normal subgroups of a group G such that $H \subseteq K$. Then prove that $\frac{G}{K} \cong \frac{G/H}{K/H}$.

(Turn Over)

5

2

3

5

(d) Prove that the necessary and sufficient condition for a homomorphism of a group G onto a group G' with kernel K to be an isomorphism is that $K = \{e\}$.

5

Or .

State and prove Cayley's theorem.

About the girle of the state of the state of the state of