3 SEM TDC STSH (CBCS) C 7

2021

(Held in January/February, 2022)

STATISTICS

(Core)

Paper: C-7

(Mathematical Analysis)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

- Choose the correct alternative out of the given ones:
 - (a) The set

$$S = \left\{ \frac{1}{n}, \ n \in N \right\}$$

is bounded, where (N is the set of natural numbers)

(i) the supremum 1 belongs to S and infimum 0 does not

- (ii) the supremum n belongs to S and infimum 1 does not
- (iii) the supremum 1 and infimum 0 both do not belong to S
- (iv) None of the above
- (b) If $S_{n+1} \ge S_n$, then the sequence $\{S_n\}$ is
 - (i) monotonic increasing
 - (ii) strictly increasing
 - (iii) monotonic decreasing
 - (iv) oscillatory
- (c) The series $\sum U_n$ of positive terms is convergent or divergent as

$$\lim_{n\to\infty}\frac{U_n}{U_{n+1}}>1 \text{ or } <1$$

then this test is known as

- (i) comparison test
- (ii) Raabe's test
- (iii) D'Alembert's test
- (iv) Cauchy's condensation test
- (d) An alternating series $\sum (-1)^n a_n$, where $a_n \ge 0$ for all n, is convergent if
 - (i) $\{a_n\}$ is bounded
 - (ii) $\{a_n\}$ is convergent
 - (iii) $\{a_n\}$ is decreasing
 - (iv) $\{a_n\}$ is decreasing and $\lim a_n = 0$

(e) To which of the following, Rolle's theorem can be applied?

(i)
$$f(x) = \tan x$$
 in $[0, \pi]$

(ii)
$$f(x) = \cos\left(\frac{1}{x}\right)$$
 in [-1, 1]

(iii)
$$f(x) = x^2$$
 in [2, 3]

(iv)
$$f(x) = x(x+3)e^{-x/2}$$
 in [-3, 0]

(f) Lagrange's form of remainder after n terms in Taylor's development of the function e^x in a finite form in the interval [a, a+h] is

(i)
$$\frac{h^n}{n!}e^{a+\theta h}$$

(ii)
$$\frac{h^n}{n!}e^{\theta h}$$

(iii)
$$\frac{h^n(1-\theta)}{n!}e^{a+\theta h}$$

(iv)
$$\frac{h^n(1+\theta)^n}{n!}e^{a+\theta h}$$

- (g) The n th divided difference of a polynomial of n th degree is
 - (i) always zero
 - (ii) always equal to n
 - (iii) always constant
 - (iv) not defined
- (h) Which one of the following is not a transcendental equation?

(i)
$$2x - \log_{10} 2 = 7$$

(ii)
$$5x - \log_{10} x = 7$$

(iii)
$$e^x - 3x = 0$$

(iv)
$$e^{-x} = \sin x$$

- 2. Answer the following questions: 2×8=16
 - (a) Define limit point of a set. When is a set said to be closed?
 - (b) Define montone sequences.
 - (c) What is Cauchy's condensation test?
 - (d) Define Raabe's test.
 - (e) A function f(x) is defined on R by

$$f(x) = x$$
; if $0 \le x < 1$
= 1; if $x \ge 1$

Does f'(1) exist? Verify.

- (f) State Rolle's theorem.
- (g) Define operators E and Δ , and show that $E\Delta = \Delta E$.
- (h) Explain the use of numerical integration in statistics.
- 3. Answer any two of the following questions:

 $7 \times 2 = 14$

(a) Define a bounded set and bounded sequence. If $\{a_n\}$ is a bounded sequence such that $a_n > 0$ for all $n \in \mathbb{N}$, then show that

$$\underline{\lim} \left\{ \frac{1}{a_n} \right\} = \frac{1}{\overline{\lim}_{a_n}}, \text{ if } \overline{\lim}_{a_n} > 0$$

$$2+5=7$$

(b) Prove that a set is closed iff its complement is open. Prove that the set of rational numbers in [0, 1] is countable.

4+3=7

(c) Define limit superior and limit inferior of a bounded sequence. Show that if (x_n) is a bounded sequence, then (x_n) converges iff $\limsup(x_n) = \liminf(x_n)$.

3+4=7

4. Answer any two of the following questions:

 $7 \times 2 = 14$

(a) Define D'Alembert's ratio test. By virtue of D'Alembert's ratio test, test whether the series

$$\sum \frac{n^2 - 1}{n^2 + 1} \cdot x^n, \ x > 0$$

is convergent or divergent.

3+4=7

(b) Define Leibnitz test for alternating series. Show that the series

$$\sum \frac{e^{-\lambda x} \lambda^x}{\lfloor x}, \ \lambda > 0$$

convergent.

2+5=7

(c) State L'Hospital's rule. Evaluate

$$\lim_{x \to 0} \frac{x^2 - \sin^2 x}{x^4}$$
 4+3=7

5. Answer any two of the following questions:

 $7 \times 2 = 14$

(a) Explain with example differentiability of functions. For what choice of a and b, the function

$$f(x) = \begin{cases} x^2, & x \le k \\ ax + b, & x > k \end{cases}$$

is differentiable at x = k?

3+4=7

(b) State Lagrange's mean value theorem and show that

$$\frac{v-u}{1+v^2} < \tan^{-1} v - \tan^{-1} u < \frac{v-u}{1+u^2}$$

if 0 < u < v.

2+5=7

- (c) State Cauchy's mean value theorem.

 Expand cos x in powers of x in infinite series using Maclaurin's series expansion.

 2+5=7
- 6. Answer any two of the following questions:

 $7 \times 2 = 14$

- (a) State Lagrange's interpolation formula and discuss its merits and demerits. Apply Lagrange's formula to find f(5), given that f(1) = 2, f(2) = 4, f(3) = 8, f(4) = 16, f(7) = 128 and explain why the result differs from 2^5 .
- (b) State and prove Simpson's ¹/₃rd rule for numerical integration. What is the effect of—
 - (i) change of origin;
 - (ii) change of scale on this rule? 5+2=7
- (c) What is a polynomial? Define zero of a polynomial. Describe Newton-Raphson method. In which situation this method is applicable? 2+4+1=7

* * *