4 SEM TDC ECO M 1

2018

(May)

ECONOMICS

(Major)

Course: 401

(Mathematics for Economics)

Full Marks: 80 Pass Marks: 32/24

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct option/Answer the following: 1×8=8
 - (a) $A \cap A' = ?$
 - (i) Ω
 - (ii) **o**
 - (iii) A
 - (iv) A'

(b) If $A = \begin{bmatrix} 3 & 2 \\ 1 & 5 \end{bmatrix}$, then the value of |A'| will

be

- (i) -13
- (ii) 13
- (iii) -16
- (iv) 16
- (c) The maximum number of linearly independent rows or columns of a matrix is called
 - (i) norm of a matrix
 - (ii) rank of a matrix
 - (iii) idempotent matrix
 - (iv) partitioned matrix
- (d) Let A matrix is of dimension m×n and B matrix is of dimension o×p. A and B are conformable for multiplication in the form AB if
 - (i) m = p
 - (ii) n = 0
 - (iii) n = p
 - (iv) m = 0
- (e) Define producer's surplus.

- (f) The elasticity of substitution of CES production function is
 - (i) 0
 - (ii) 1
 - (iii) $\frac{1}{1+p}$
 - (iv) $\frac{1}{1-p}$
- (g) Given, MC = 2aQ + b. TC will be
 - (i) bQ+c
 - (ii) $aQ^2 + c$
 - (iii) $aQ^2 + bQ$
 - (iv) $aQ^2 + bQ + c$
- (h) The function

$$f(x) = \frac{x^2 + 3x + 4}{x - 1}$$

is not continuous at

- (i) 1
- (ii) 2
- (iii) 3
- (iv) None of the above

2.	Ans	ower any four of the following: $4\times4=$	16
	(a)	Mathematically derive the relationship	
		between average revenue, marginal	
		revenue and price elasticity of demand.	
	(b)	Evaluate:	
		$\lim_{x \to 1} \frac{x^3 - 3x^2 + 2}{x^2 + 5x - 6}$	
	(c)	Write the assumptions of input-output analysis.	
	(d)	Solve $Y_t = -7Y_{t-1} + 16$, $Y_0 = 5$.	
	(e)	Draw the graph of $xy = 1$.	
	(f)	Prepare a note on polynomial and rational functions.	
3.	(a)	(i) Distinguish between equal set and equivalent set.	3
		(ii) If $A = \{1, 4, 5, 7\}$ and $B = \{4, 9, 8, 10\}$, find $(A \cup B) \setminus (A \cap B)$.	3
		(iii) Show the operations of sets with the help of Venn diagram.	5
		Or	J
	(b)	(i) Write in short on the following with example: 3+3=	6
		(1) Ordered pairs	U
		(2) Continuity of function	
8P /6	57	(Continued)

(ii) In a test, 60 percent of the students passed in Economics and 50 percent in Statistics. How many students passed in both the subjects?

5

4. (a) (i) Solve the input-output model X(I-A) = F by using Cramer's rule. Given

$$A = \begin{bmatrix} 0.3 & 0.2 & 0.4 \\ 0 & 0.2 & 0.1 \\ 0.1 & 0.2 & 0.2 \end{bmatrix} \text{ and } F = \begin{bmatrix} 400 \\ 600 \\ 500 \end{bmatrix}$$

7

(ii) Distinguish between the following:

2+2=4

- (1) Static and Dynamic inputoutput models
- (2) Open and Closed input-output models

Or

(b) (i) Verify that the following matrix A is idempotent:

3

$$A = \begin{bmatrix} \frac{1}{6} & -\frac{1}{3} & \frac{1}{6} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ \frac{1}{6} & -\frac{1}{3} & \frac{1}{6} \end{bmatrix}$$

(ii) Find the inverse of the following matrix B:

5

$$B = \begin{bmatrix} 2 & 0 & -5 \\ 4 & 1 & 2 \\ -3 & 0 & 1 \end{bmatrix}$$

(iii) Given

$$A = \begin{bmatrix} 2 \cdot 1 & 3 \cdot 2 & 0 \cdot 1 \\ 5 \cdot 3 & 1 \cdot 7 & 2 \cdot 6 \end{bmatrix} \text{ and } B = \begin{bmatrix} 4 & 1 \\ 2 & 3 \\ 1 & 5 \end{bmatrix}$$

Find AB.

3

5. (a) (i) In a perfectly competitive market, the price of a product (q) is $\Sigma 4$ and the total cost (c) of a firm is $c = q^3 - 15q^2 + 31q + 500$. Find the profit maximizing output and maximum profit.

6

(ii) If the total productivity is given by

$$Q = \frac{L^2 - K}{L + K^2}$$

find the marginal productivity of L and K. 3+3=6

Or

(b) (i) Given the consumption function

$$C = 2000 - \frac{6000}{(5+Y)}$$

find the marginal propensity to consume when Y = 95.

- (ii) Prove that the elasticity of substitution is equal to one in case of CD production function.
- 6. (a) (i) Briefly discuss the uses of integral calculus in Economics.
 - (ii) Obtain the consumer's surplus of the following demand function when the market price is £ 16 per unit:

$$Q = \sqrt{16 - \frac{3}{2}P}$$

Or

(b) (i) Find the integral of $\int xe^x dx$.

(ii) The marginal revenue and marginal cost functions of a firm are MR = 20 - 2Q and $MC = 6Q^2 - 4Q + 5$ respectively. The total fixed cost is £ 20 when it sells 4 units of produce. Find the total profit of the firm.

8

6

6

5

6

3

$$\frac{dy}{dx} + 2y = 4$$

(ii) Analyze the following market model for stability:

$$Q_d = 10 - 5p$$

$$Q_s = -10 + 5p$$

$$\frac{dp}{dt} = 3(Q_d - Q_s)$$

Or

- (b) (i) Write a note on the Cobweb model.
 - (ii) In a market model

$$\begin{aligned} Q_{dt} &= 12 - 2P_t \\ Q_{st} &= -4 + 2\,P_{t-1} \\ \text{and} \quad P_{t+1} - P_t &= -0 \cdot 25(Q_{st} - Q_{dt}) \end{aligned}$$

find the time path P_t and test whether the time path is convergent.

7

4

7

4

* * *