17,18,19 20

Total No. of Printed Pages-8

4 SEM TDC ECO M 1

2017

(May)

ECONOMICS

(Major)

Course: 401

(Mathematics for Economics)

Full Marks: 80
Pass Marks: 32/24

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct answer of the following:

1×8=8

(a) If
$$A = \{1, 2, 3\}$$
 and $B = \{2, 7, 9, 12\}$, then $A \cup B = ?$

(ii) {2}

(iii) Ø

(iv) {1, 3, 7, 9, 12}

$$(b) \quad \int (ax)^n \ dx = ?$$

(i)
$$\frac{x^{n+1}}{a(n+1)} + c$$

(ii)
$$\frac{(ax)^{n+1}}{a(n+1)} + c$$

(iii)
$$\frac{1}{a}x^{n-1} + c$$

(iv)
$$ax^{n+1} + c$$

- (c) The number of subsets of a unit set is
 - (i) 0
 - (ii) 1
 - (iii) 2
 - (iv) 3
- (d) If the total variable cost function is $C = x^2 + 15x$, identify the marginal cost function.
 - (i) MC = x + 15
 - (ii) $MC = x^2 + 15$
 - (iii) MC = 2x + 15
 - $(iv) MC = x^2 + 15x$

(e)
$$\frac{d}{dx}\log x = ?$$

(i) x

(ii) e^x

(iii) $\frac{1}{x}$

(iv) x^2

(f) If

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 2 \\ 1 & 1 \\ 2 & 3 \end{bmatrix}$$

what is the value of AB?

(i)
$$\begin{bmatrix} 3 & 2 & 1 \\ 4 & 3 & 2 \end{bmatrix}$$

(ii)
$$\begin{bmatrix} 9 & 13 \\ 13 & 19 \end{bmatrix}$$

(iii)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

- (iv) None of the above
- (g) A consumer has a utility function $U = U(Q) = \alpha Q^{\beta}$; his marginal utility function is given by

(i)
$$MU = \alpha O^{\beta - 1}$$

(ii)
$$MU = \beta Q^{\alpha - 1}$$

(iii)
$$MU = \alpha\beta Q^{\alpha-1}$$

(iv)
$$MU = \alpha\beta O^{\beta-1}$$

$$(h) \quad \int x \, dx = ?$$

(i)
$$\log x + c$$

(ii)
$$\frac{1}{x} + c$$

- (iii) x + c
- (iv) None of the above
- **2.** Answer any four of the following: $4\times4=16$
 - (a) Draw the graph of $y=x^2+3$.
 - (b) "In almost all fields of economics, mathematics is useful." Explain.
 - (c) Given the matrices

$$A = \begin{bmatrix} 3 & 2 & 0 \\ 4 & 1 & 3 \\ 2 & 2 & 3 \end{bmatrix} \text{ and } B = \begin{bmatrix} 3 & 1 & 9 \\ 4 & 0 & 2 \\ -2 & 2 & 6 \end{bmatrix}$$

Find AB.

- (d) Given the Cobb-Douglas production function $Q = AK^{\alpha}L^{\beta}$. Find the marginal productivities of labour and capital.
- (e) Evaluate:

$$\lim_{x \to 3} \frac{x^3 - 27}{x - 3}$$

3.	(a)	(i)	Define with examples:	2×4=8
	10.00		(1) Null set	
			(2) Union of sets	
			(3) Intersection of sets	
			(4) Power set	
		(ii)	Define function. What are t	he
			different types of function?	1+2=3
			Or	
	(f.)	<i>(</i> 3)	If $A = \{1, 2, 3\}$, write the subsets	of
	(b)	(4)	$A = \{1, 2, 3\}$, write the subscts A .	2
		(ii)	Define proper subset.	2
		The second	Define limit and continuity	
		(iii)	function.	2+2=4
		(in)	Given $A = \{2, 4, 6\}$ and	
		(10)	$\Omega = \{2, 4, 6, 9, 12\}$. Find A'.	3
		1	702 303 70000 31	
4.	(a)	(i)	In the static input-outp	ut
			framework, find the consistent lev	rel
			of sectoral outputs (X), if	
			0.2 0.4 0.3	
		A	$\begin{bmatrix} 0.2 & 0.4 & 0.3 \\ 0.1 & 0.3 & 0.2 \\ 0.4 & 0.1 & 0.1 \end{bmatrix} \text{ and } F = \begin{bmatrix} 200 \\ 400 \\ 600 \end{bmatrix}$	
			$\begin{bmatrix} 0.4 & 0.1 & 0.1 \end{bmatrix} \qquad \begin{bmatrix} 600 \end{bmatrix}$	8
		(ii)	If	
		isans		
			$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, B = \begin{bmatrix} 4 & 5 \\ 6 & 7 \end{bmatrix},$	
			find a matrix C such th	at
			A + B = 2C.	3
	- 4 =		AND THE STREET STREET, STREET STREET,	Over)
P7/6	040		(Turn	over)

Or

(b) (i) Solve the following national income model by Cramer's rule: $Y = C + I_0 + G_0$

9

 $C = \alpha + \beta(Y - T)$ T = vY

Given $(0 < \beta, \nu < 1)$

(ii) Define rank of a matrix.

2

12

5. (a) State and prove the properties of the Cobb-Douglas production function.

Or

(b) (i) Given the total cost function

$$TC = 10000 + 100x - 10x^2 + \frac{x^3}{3}$$

Find-

- (1) the marginal cost function;
- (2) the slope of marginal cost function;
- (3) output at which marginal cost is equal to average variable cost.

3×3=9

(ii) If the average revenue function is given by AR = 50 - 2q, find the point elasticity of demand at q = 5.

3

6. (a) (i) Given the MR function MR = R'(q) = 20 - qEight out the price of the re-

Find out the price of the product when q = 10.

(ii) Define producer's surplus. Given the supply function $q = \sqrt{-4 + 4p}$ and the market price is 10. Find the producer's surplus. 1+6=7

Or

(b) (i) The marginal cost function is given by

$$MC = 5x^2 - 4x + 1$$

Find the average cost function if the total fixed cost is ₹ 200.

- (ii) Find $\int (3x-4)^2 dx$.
- (iii) Illustrate the uses of definite integrals in economics.
- 7. (a) (i) Solve $\frac{dy}{dx} = 9$.
 - (ii) Analyze the following market model for stability:

$$Q_d = 14 - 3P$$

$$Q_s = -10 + 2P$$

$$\frac{dP}{dt} = 4(Q_d - Q_s)$$

4

5

Or

- (b) (i) Solve $Y_t = -7Y_{t-1} + 16$, $Y_0 = 5$
 - (ii) Given the demand and supply functions for cobweb model,

$$Q_{dt} = 10 - 2P_t$$

$$Q_{st} = -5 + 3P_{t-1}$$

Find the time path of P_t .

* * *