13,14,15,

25

Total No. of Printed Pages-8

4 SEM TDC ECO M 1

2013

(May)

ECONOMICS

(Major)

Course: 401

(Mathematics for Economics)

Full Marks: 80 Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct answer:

1×8=8

- (a) Given $S = \{1, 2, 7, 8\}$ and $T = \{2, 4, 6, 8\}$. $S \cap T$ is
 - (i) {1, 2, 4, 6, 7, 8}
 - (ii) {2, 8}
 - (iii) {1, 4, 6, 7}
 - (iv) None of the above

(b)
$$y = \alpha_0 + \alpha_1 x + \alpha_2 x^2$$
 is a form of

- (i) constant function
- (ii) polynomial function
- (iii) exponential function
- (iv) logarithmic function

(c)
$$\begin{vmatrix} 3 & 2 \\ 1 & 5 \end{vmatrix} = ?$$

- (i) 13
- (ii) -13
- (iii) 16
- (iv) -16

(d)
$$(A+B)'=?$$

- (i) A'+B'
- (ii) A' + B
- (iii) A + B'
- (iv) A + B

(e) Which of the following is a symmetric matrix?

(i)
$$\begin{bmatrix} 2 & 2 & 2 \\ 1 & 2 & 2 \\ 2 & 3 & 2 \end{bmatrix}$$

(ii)
$$\begin{bmatrix} 4 & 0 & 0 \\ 2 & 4 & 0 \\ 4 & 2 & 4 \end{bmatrix}$$

(iii)
$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & 4 & 3 \\ 0 & 0 & 3 \end{bmatrix}$$

(iv)
$$\begin{bmatrix} 3 & 2 & 3 \\ 2 & 1 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

(f) Given
$$y = \frac{5}{2x^2}$$
. $\frac{dy}{dx}$ is

(i)
$$-\frac{x^3}{5}$$

(ii)
$$\frac{x^3}{5}$$

(iii)
$$\frac{5}{x^3}$$

(iv)
$$-\frac{5}{x^3}$$

- (g) The elasticity of substitution of Cobb-Douglas production function is
 - (i) C
 - (ii) 1
 - (iii) more than 1
 - (iv) less than 1
- $(h) \int \frac{1}{x^5} dx = ?$
 - (i) $\frac{1}{4x^4} + c$
 - (ii) $-\frac{1}{4x^4} + c$
 - (iii) $4x^4 + c$
 - (iv) None of the above
- 2. Write short notes on (any four): $4\times4=16$
 - (a) Rank of matrix
 - (b) Properties of determinant
 - (c) Mathematical derivation of the relationship between AC and MC
 - (d) Mathematical derivation of the relationship between AR and MR
 - (e) Consumer's surplus
 - (f) First-order difference equation

6

7

4

3. (a) (i) Given the universal set

 $S = \{a, b, c, 1, 2, 3\}$

Find the complement of

 $S_1 = \{a, 1, 2\}$

- (ii) Show the operations of sets with the help of Venn diagram.
- (iii) Find the limit of the function $y = 10 6x + x^2$ as $x \to 2$ 3

Or

- (b) (i) What is ordered pair? How is it related to function?
 - (ii) Prepare a brief note on different forms of functions and their graphs. 6
- 4. (a) (i) Show how the sectoral equilibrium output can be estimated in a framework of static open input-output model.
 - (ii) From the following market model, find the equilibrium output and price using Cramer's rule:

 $Q_d = a - bP$

 $Q_s = -c + dP$

 $Q_d = Q_s$

Or

(b) (i) Given

$$A = \begin{bmatrix} 2 & 3 & 0 \\ 5 & 1 & 2 \end{bmatrix} \text{ and } B = \begin{bmatrix} 4 & 1 \\ 2 & 3 \\ 1 & 5 \end{bmatrix}$$

Find AB.

3

(ii) Find the determinant of A, where

$$A = \begin{vmatrix} 6 & 0 & 4 \\ 2 & 1 & 3 \\ 4 & 2 & 2 \end{vmatrix}$$

4

(iii) Given

$$A = \begin{bmatrix} 2 & 3 \\ -4 & 1 \end{bmatrix}$$

Find A^{-1} .

4

5. (a) (i) Find the derivative of the following function:

4

$$y = \frac{5x}{(10 - 2\log x^2)^2}$$

(ii) Given the consumption function

$$C = C(Y) = 2000 - \frac{6000}{(5+Y)}$$

Find out the marginal propensity to consume (MPC) and marginal propensity to save (MPS).

4

(iii)	Prove mathematically that for substitutes indifference curves are negatively sloped.	4
	Or	
(i)	Explain the geometrical interpre- tation of derivatives in case of a single-independent variable.	ϵ
(ii)		
	theorem.	6
(i)	Find	
	$\int \frac{4x^3 + 2}{(4x^4 + 8x)^5} dx$	5
(ii)	Obtain the consumer's surplus of the following demand function when the market price is Rs 16 per unit : $Q = \sqrt{16 - \frac{3}{2}P}$	6
	Or	
(i)	Find $\int e^x \cdot x dx$	3
	following marginal cost function when fixed cost is Rs 500 :	3
	(i) (ii) (ii) (ii)	substitutes indifference curves are negatively sloped. Or (i) Explain the geometrical interpretation of derivatives in case of a single-independent variable. (ii) Prove that Cobb-Douglas production function satisfies the Euler's theorem. (i) Find $\int \frac{4x^3 + 2}{(4x^4 + 8x)^5} dx$ (ii) Obtain the consumer's surplus of the following demand function when the market price is Rs 16 per unit: $Q = \sqrt{16 - \frac{3}{2}P}$ Or (i) Find $\int e^x \cdot x dx$

(Turn Over)

6.

P13-3600/1164

(iii) Given the supply function Q = -3 + 2P. Obtain the producer's surplus when market price is Rs 6. 5

7. (a) (i) Solve the differential equation

$$\frac{dy}{dx} + 5y = 10$$

with initial condition y(0) = 5.

(ii) Analyze the following market model for stability:

$$Q_d = 14 - 3P$$

$$Q_s = -10 + 2P$$

$$\frac{dP}{dt} = 4(Q_d - Q_s)$$

Or

(b) (i) Solve the following difference equation:

 $Y_{t+1} - 5Y_t = 12$, with $Y_0 = 10$

(ii) In a cobweb model

$$Q_{dt} = a - bP_t \ (a, b > 0)$$

 $Q_{st} = -c + dP_{t-1} \ (c, d > 0)$
 $Q_{dt} = Q_{st}$

obtain the time path of P_t and analyze the condition for its convergence.

4

7

4

7