5 SEM TDC CHMH (CBCS) C 12

2021

(Held in January/February, 2022)

CHEMISTRY

(Core)

Paper: C-12

(Physical Chemistry)

Full Marks: 53
Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct answer from the following: 1×4=4
 - (a) The degeneracy of rotational level of a diatomic molecule having energy $\frac{h^2}{4\pi^2 I}$ is
 - (i) 0
 - (ii) 1
 - (iii) 2
 - (iv) 3

- (b) Vibrational transition exists in
 - (i) infrared region
 - (ii) microwave region
 - (iii) visible region
 - (iv) radio-frequency region
- (c) The degeneracy of a particle of mass m confined in a three-dimensional box having energy level equal to $\frac{14h^2}{8ma^2}$ is
 - (i) 7
 - (ii) 14
 - (iii) 6
 - (iv) 8
- (d) In photosynthesis, chlorophyll acts as a
 - (i) catalyst
 - (ii) photosensitizer
 - (iii) photoinhibitor
 - (iv) All of the above
- 2. Answer any four questions from the following: 2×4=8
 - (a) Microwave studies are done only in gaseous state. Explain.

- (b) Explain why the nuclei H¹ and ¹³C are suitable for NMR investigation.
- (c) Write a short note on fingerprint region.
- (d) What is chemiluminescence? Give one example.
- (e) Show that the functions $\psi_1 = \left(\frac{1}{2\pi}\right)^{\frac{1}{2}}$ and $\psi_2 = \left(\frac{1}{\pi}\right)^{\frac{1}{2}} \cos x$ in the interval x = 0 to $x = 2\pi$ are orthogonal to each other.
- (f) Show that $\sin 4x$ is an eigenfunction of the operator $\frac{d^2}{dx^2}$. Find the eigenvalue.

UNIT-I

- 3. Answer any four questions from the following: 4×4=16
 - (a) What are normalized and orthogonal wave functions? For the function $\psi(\theta) = \sin \theta$, where the variable θ changes continuously from 0 to 2π , determine whether it is normalized or not. If it is not, find the normalization factor.

1+2+1=4

(b) ψ_i and ψ_j represent the wave function corresponding to two different states of a particle moving freely in a one-dimensional box. Show that they are orthogonal to each other.

4

(c) Consider a particle of mass m confined in a two-dimensional box of edge lengths a and b. Find the energy and wave functions by solving the Schrödinger's equation. The potential energy

> V(x, y) = 0, for $0 \le x \le a$ and $0 \le y \le b$ = ∞ , elsewhere

Also write the expression for energy when a = b. 3+1=4

(d) (i) What does the term 'degenerate levels' mean? Determine the degree of degeneracy of the level $\frac{17h^2}{8ma^2}$ of a particle in a cubical box. 1+1=2

(ii) Form Schrödinger wave equation for a one-dimensional simple harmonic oscillator.

2

- (e) (i) The distance between the atoms of a diatomic molecule is r and its reduced mass is μ . If the angular momentum is L and moment of inertia is I, then prove that kinetic energy $T = \frac{L^2}{2\mu r^2}$.
 - (ii) Write the expression for energy for a rigid rotator. 1
- (f) (i) Write down the Schrödinger wave equation in polar form for H-atom. 11/2
 - (ii) Calculate the most probable distance r_{mp} of the electron from the nucleus in the ground state of hydrogen atom, given that the normalized ground state wave function is

$$\psi_{1s} = \frac{1}{\sqrt{\pi}a_0^{3/2}} \; e^{(-r/a_0)}$$

Given $a_0 = 0.529 \text{ Å}$. $2\frac{1}{2}$

(g) (i) Write down the equation showing
Hamiltonian operator for onedimensional harmonic oscillator.

3

(ii) Sketch the variation of radial probability density against the distance from the nucleus for 2s state for hydrogen atom.

2

UNIT-II

- **4.** Answer any *two* questions from the following: 8×2=16
 - (a) (i) Show that the lines in the rotational spectrum of a diatomic molecule are equispaced under the rigid rotator approximation.

3

- (ii) A transition from J=0 to J=1 in the rotational spectrum of CO corresponds to $3.84235 \,\mathrm{cm}^{-1}$. Calculate the moment of inertia and bond length. 2+2=4
- (iii) Write the selection rule for rotational spectra.

(b) (i) Show that the frequency of the absorbed radiation in pure vibrational spectra is equal to the fundamental frequency of vibration ν₀ of the molecule.

21/2

1

	(ii)	Prove that the ratio of wave numbers of fundamental, first overtone and second overtone is approximately 1:2:3.	2½
	(iii)	Roughly sketch the fundamental modes of vibrations of CO_2 and show the infrared active vibrations.	3
(c)	(i)	State and explain Franck-Condon principle.	3
	(ii)	Explain why TMS is used as a reference substance in NMR spectroscopy.	2
	(iii)	Calculate the NMR frequency (in MHz) of the proton (1 H) in a magnetic field of intensity 1.4092 tesla, given that $g_{N} = 5.585$ and $\mu_{N} = 5.05 \times 10^{-27}$ JT ⁻¹ .	2
	(iv)	Briefly discuss Born-Oppenheimer approximation. Write any one difference between fluorescence and phosphorescence.	1
		*	1.7

UNIT-III

- 5. Answer any two questions from the following: $4\frac{1}{2}\times2=9$
 - (a) State and explain Lambert-Beer law.

 Write the significance of molar extinction coefficient.

 4½
 - (b) Explain the term 'quantum yield'.

 Discuss briefly the reasons for high and low quantum yields.

 1½+3=4½
 - (c) What is photochemical equilibrium?

 Give example of a photochemical equilibrium in which only one reaction is light sensitive. Deduce an expression for equilibrium constant of a photochemical equilibrium. 1+1+2½=4½

 $\star\star\star$