Total No. of Printed Pages-4

5 SEM TDC DSE PHY (CBCS) DSE 1 (H) 2021

(Held in January/February, 2022)

PHYSICS

(Discipline Specific Elective)

(For Honours)

Paper: DSE-1

(Classical Dynamics)

Full Marks: 80 Pass Marks · 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

Choose the correct answer:

 $1 \times 5 = 5$

A particle of mass m moves along a straight line and attached towards a point on this line with a proportional to the distance x from the point. The Lagrangian of the system is

(i)
$$\frac{1}{2}mv^2 + \frac{1}{2}kx^2$$
 (ii) $\frac{1}{2}mv^2 - \frac{1}{2}kx^2$

(ii)
$$\frac{1}{2}mv^2 - \frac{1}{2}kx^2$$

(iii)
$$mv^2 + \frac{1}{2}kx^2$$
 (iv) $\frac{1}{2}mv^2 - kx$

(iv)
$$\frac{1}{2}mv^2 - kx$$

(b) The rest mass of an electron is m_0 . What will be its mass when it moves with velocity 0.6c?

(ii)
$$\frac{5}{4}m_0$$

(iii)
$$\frac{4}{5}m_0$$

(iv)
$$2m_0$$

(c) A body with a charge q starts from rest and acquire a velocity 0.5c. Then the new charge on it is

(i)
$$q\sqrt{1-(0\cdot 5)^2}$$
 (ii) $\frac{q}{\sqrt{1-(0\cdot 5)^2}}$ (iii) $q\sqrt{1-0\cdot 5}$ (iv) q

(d) If ϕ is the scalar potential and \overrightarrow{A} is the vector potential, the total potential energy of a charged particle in an electromagnetic field is

(i)
$$q\phi + \frac{q}{c}(\vec{A} \cdot \vec{B})$$
 (ii) $q\phi + \frac{q}{c}(\vec{A} \cdot \vec{E})$

- (iii) $q\phi \frac{q}{c}(\vec{A} \cdot \vec{v})$ (iv) $q\phi + \frac{q}{c}(\vec{A} \cdot \vec{\phi})$
- (e) For a linear oscillatory system, the total energy is proportional to
 - (i) square of the time period
 - (ii) amplitude
 - (iii) square of the amplitude
 - (iv) square of the frequency
- 2. (a) Discuss qualitatively the equations of motion of Newton, Lagrange and Hamilton highlighting the difference between the three.
 - (b) Set up the Lagrange's equation for a simple pendulum and solve for θ . 4+3=7

5

	State and explain Hamilton's (variational) principle and derive Lagrange's equation from it. 2-Or	(c)	
1 +3=6 t a 5	Given that the Hamiltonian has implicit dependence on time, prove that it is a constant of motion. Or	(đ)	
	Show that the shortest distance between two points in a plane is a straight line.	•	
2	examples.	(a)	3.
f : 6	· · · · · · · · · · · · · · · · · · ·	(b)	
s t 4	through the laboratory at three-fifths the speed of light. How long does it last in the laboratory?	(a)	4.
1 e g	· · · · · · · · · · · · · · · · · · ·	(b)	
over)		/382	22P.
•	•	,	إلمنتهن

	(c)	Show that the space-time interval is an	
		invariant under Lorentz transformation.	4
	(d)	Write down the Lorentz transformation	
		equation in matrix form.	3
		Or	
		Is it possible for an external force to be	
		acting on a system and relativistic	
		momentum to be conserved? Explain.	
	(e)	Construct Minkowski space and	
		calibrate it.	5
	(f)	Explain simultaneity, length contraction	Ĭ
		and time dilation with the help of	
		space-time diagram.	3
	(g)	Discuss the physical conditions of	Ĭ
		space-like and time-like intervals. 2+2=	=4
	(h)		•
		momentum relation $E^2 = p^2c^2 + m_0^2c^4$.	_
		Or	4
		 -	
		Discuss Doppler effect from four-vector	
	(i)	perspective.	
	19	Define four-vector, rest mass energy,	
_	/-1	world line and proper time. 1×4=	-4
5.	(a)	, 1 W WING Edg. Alli	
		establish the equation of continuity for	
		fluid. 3+5=	-8
	(b)	Write the expression for Reynolds'	
		number and explain the states of flow of	
•		liquid for lower and higher Reynolds'	
		number.	2
		***	~
חר	050	0 1000 F GDM #DG DGD DIFF (GD	