2 SEM TDC MTH M 1

2014

(May)

MATHEMATICS

(Major)

Course: 201

(Matrices, Ordinary Differential Equations, Numerical Analysis)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

(A) Matrices

(Marks : 20)

- 1. (a) State True or False: 1

 If A is a non-zero matrix, then rank (A) < 1.
 - (b) Define elementary matrix. Also find the rank of the matrix $E_{12}(3)$ considering I_3 .

(c) Find the rank of the following matrix reducing it into normal form:

 $\begin{bmatrix} 2 & -2 & 0 & 6 \\ 4 & 2 & 0 & 2 \\ 1 & -1 & 0 & 3 \\ 1 & 0 & 1 & 2 \end{bmatrix}$

Or

Reduce the following matrix A to Echelon form and hence find its rank:

$$A = \begin{bmatrix} 5 & 3 & 14 & 4 \\ 0 & 1 & 2 & 1 \\ 1 & -1 & 2 & 0 \end{bmatrix}$$

- **2.** (a) Write down the condition under which the system of equations AX = B possesses a unique solution.
 - (b) Show that a characteristic vector of a matrix cannot correspond to more than one characteristic value of A.
 - (c) Show that the only real value of λ for which the following equations have non-zero solution is 6:

$$x+2y+3z = \lambda x$$
$$3x+y+2z = \lambda y$$
$$2x+3y+z = \lambda z$$

5

1

2

3

(d) Show that the following system of equations is consistent and solve them completely: 2+4=6

$$x+y+z=6$$
$$x+2y+3z=14$$
$$x+4y+7z=30$$

Or

State Cayley-Hamilton theorem. Show that the matrix

$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

satisfies Cayley-Hamilton theorem. 1+5=6

(B) Ordinary Differential Equations

(Marks : 30)

- 3. (a) Write True or False:

 "The singular solution of a differential equation in Clairaut's form contains only one arbitrary constant."
 - (b) Find the integrating factor of the differential equation

$$(x^3 + y^3)dx - xy^2dy = 0$$
 2

(c) Solve any one:

3

4

- (i) $y = (1+p)x + ap^2$, where $p = \frac{dy}{dx}$
- (ii) $\frac{dy}{dx} + x\sin 2y = x^3 \cos^2 y$
- (d) Use Wronskian to show that the functions x, x^2 , x^3 are linearly independent. Determine the differential equation with these as independent solutions.

Or

Show that the Wronskian of the functions x^2 and $x^2 \log x$ is non-zero. Can these functions be independent solutions of an ordinary differential equation? If so, determine this differential equation.

4. (a) What is the auxiliary equation of the differential equation

$$\frac{d^2y}{dx^2} + P_1 \frac{dy}{dx} + P_2 y = 0$$

where P_1 and P_2 are constant?

1

- (b) Define linear homogeneous equation.
- 1

(c) Solve any two:

(i)
$$(D+3)^2 y = 0$$

(ii)
$$\frac{d^2y}{dx^2} = \cos nx$$

(iii)
$$\frac{d^2y}{dx^2} - y = xe^x \sin x$$

(d) Solve any two:

5×2=10

- (i) $\frac{d^2y}{dx^2} 2\tan x \frac{dy}{dx} + 5y = e^x \sec x$ (By removing 1st order derivative)
- (ii) $(1+x^2)^2 \frac{d^2y}{dx^2} + 2x(1+x^2)\frac{dy}{dx} + 4y = 0$ (By changing the independent
- variable)
- (iii) $\frac{d^2y}{dx^2} + x^2y = \sec nx$ (By the method of variation of parameters)

(C) Numerical Analysis

(Marks: 30)

- 5. (a) State True or False:

 The bisection method always converges.
 - (b) Write the basic difference between the bisection method and method of false position.
 - (c) Explain the geometrical interpretation of the Newton-Raphson method for solving an algebraic equation.
 - (d) Answer any two: $5\times2=10$
 - (i) Describe the regula-falsi method for obtaining a real root of an algebraic equation.
 - (ii) By using Newton-Raphson method, find the root of $x^4 x 10 = 0$, which is nearer to x = 2, correct to three decimal places by performing at least 3 iteratives.
 - (iii) Solve the following equations by Gauss elimination method:

$$x+2y+z=3$$
$$2x+3y+3z=10$$
$$3x-y+2z=13$$

1

3

- 6. (a) State True or False:

 Simpson's one-third rule is better than the trapezoidal rule.
 - (b) Evaluate $\Delta^3(e^{ax+b})$ the interval of differencing being h. 2
 - (c) Show that $E \equiv 1 + \Delta$, where the symbols have their usual meanings. 2
 - (d) Answer any two: $5\times2=10$
 - (i) Deduce Lagrange interpolation formula.
 - (ii) Estimate the missing term in the following table:

$$x : 0 1 2 3 4$$

 $f(x) : 1 3 9 ? 81$

(iii) Show that $\int_0^1 \frac{dx}{1+x} = \log 2 = 0.69315$, by dividing the range into 10 equal parts.
